Local Denial of Service in Nissan Leaf EV (2018) Head Unit Display (CVE-2021-1000008)

Summary

The head unit display in the Nissan Leaf electric vehicle (EV) has a local denial of service vulnerability that can be used to lock up the screen. Once locked, the car remains drivable but the display can no longer be used (even if the car is turned off and on). The only way to unlock the screen is by removing and re-inserting the SD card containing the mapping data.

This was tested on the 2018 SV model of the Nissan Leaf, other Leaf models/trims and other Nissan models with similar SOS functionality may also be affected.

This issue has been reported to the vendor (Nissan), NHTSA and ICS-CERT. Since the vulnerability is low risk there is minimal impact on end users. The vendor has confirmed the issue, but no patch is currently available.

Details

The Nissan Leaf is an electric car which contains a head unit with a touch screen interface in the middle of the dashboard. This panel is used for entertainment and navigation functions such as playing music/radio, navigation and interface with cell phone operating systems such as Android Auto and Apple Play. This panel (#3) is separate from the meters and gauges screen (#2) used to display information regarding the operation of the vehicle itself (as seen below – from the owner’s manual):

panel

Additionally, the Nissan Leaf just like many other Nissan models includes an SOS button located on the roof of the car above the passenger seat and is intended to summon help in case of an emergency. This button is paired with the Nissan app and can be seen below (screenshots from Nissan’s video and manual):

Screen Shot 2020-02-11 at 11.44.23 PMScreen Shot 2020-02-11 at 11.45.58 PM

The display has a denial of service vulnerability that can be used to lock up the screen. Once locked, the car remains drivable but the display can no longer be used (even if the car is turned off and on). The only way to unlock the screen is by removing and re-inserting the SD card containing the mapping data. The vulnerability seems to be the result of interaction between the SOS functionality and the rest of the software operating the head unit.

To replicate:

  1. The car being tested needs to be paired with the Nissan mobile app, and have the NissanConnect subscription enabled.
  2. Turn on the car, verify that NissanConnect with SOS functionality is enabled by checking that the little light on the SOS button is lit.
  3. Press the SOS button to trigger an emergency call.
  4. Immediately, press and hold the SOS button to cancel the call while turning off the car.
  5. The SOS call will lock the head unit, and will stay that way until the SD card is removed and re-inserted which reboots the display panel.

This was tested on the 2018 SV model of the Nissan Leaf, other Leaf models/trims and other Nissan models with similar SOS functionality may also be affected. If a NissanConnect subscription is not enabled on a particular vehicle, then it is probably not vulnerable because the SOS functionality is disabled.

Vendor Response and Mitigation

This issue has been reported to the vendor (Nissan), NHTSA and ICS-CERT. Once the report was routed to the correct team, the vendor responded quickly and confirmed the issue. Since the vulnerability is low risk there is minimal impact on end users. No patch is currently available.

A CVE will not be issued for this vulnerability by MITRE since MITRE doesn’t “assign CVE IDs for Local Denial of Service”. A CVE was issued by the Distributed Weakness Filing (DWF) project instead.

References

CVE (DWF): CVE-2021-1000008

ICS-CERT ticket # ICS-VU-984522
NHTSA case # 11308645
Nissan Information Security (IS) Case # 233758
Nissan Leaf (2018) manual: see here

Credits

The original discoverer of this issue is a minor and their full name cannot be disclosed for privacy reasons.

Timeline

2019-09-24: Initial report to the vendor
2020-01-01: Second report to the vendor, automated reply received
2020-01-27: Follow-up email sent to the vendor, no response
2020-01-28: Initial report to ICS-CERT
2020-02-08: Follow-up communication with ICS-CERT
2020-02-11: Draft advisory sent to both the vendor and ICS-CERT
2020-02-12: Reported to NHTSA
2020-02-12: CVE requested from MITRE
2020-02-16: CVE response received from MITRE
2020-02-16: Response from the vendor received (initial reports were misrouted)
2020-02 through 2021-03: Multiple phone and email communications with the vendor
2021-03-14: Public disclosure

2021-04-08: CVE assigned via DWF